Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering End Sem (Odd) Examination Dec-2017 EN3BS05 Engineering Physics

Programme: B.Tech. Branch/Specialisation: All

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 (N	(ICQs)	should be written in full inste	ad of only a, b, c or d.			
Q.1	i.	In Ruby Laser which ions gi	ve rise to the laser action	1		
		(a) Al_2O_3 (b) Al^{3+}	(c) Cr^{3+} (d) None of them			
	ii.	Optical fiber communication	is based on the phenomenon of	1		
		(a) Refraction	(b) Total internal reflection			
		(c) Polarization	(d) Diffraction			
	iii.	In Newton's ring experimen	t which type of source is used:	1		
		(a) Mercury lamp	(b) Sodium lamp			
		(c) Incandescent lamp	(d) Fluorescent lamp			
	iv.	In Fraunhofer diffraction, the	e incident wave front should be	1		
		(a) Elliptical (b) Plane	(c) Spherical (d) Cylindrical			
	v.	Compton effect supports:		1		
		(a) Wave nature of radiation				
		(b) Particle nature of radiation	on			
		(c) Both particle and wave nature of radiation				
		(d) None of these				
	vi.	The wavelength of matter w	ave is independent of	1		
			(c) Momentum (d) Charge			
	vii.	What provides the restoring	force for simple harmonic motion in	1		
		the simple pendulum				
		(a) Elasticity (b) Gravity	_			
	viii.	Divergence of a vector field		1		
		(a) Vector Quantity	(b) Scalar Quantity			
		(c) Not defined	(d) Infinite			

P.T.O.

	ix.	Can the centre of mass of a body lie where there is absolutely no mass		1
		(a) Yes	(b) No	
		(c) Both (a) and (b)	(d) None of these	
	х.		form speed along a circle. The force	1
		acting on the body is		
		(a) Centripetal force	(b) Centrifugal force	
		(c) Coriolis force	(d) Reaction force	
Q.2	i.	retina, it forms a circular	328) is incident on the eye. On the spot of radius of about 20 μm.	2
		Calculate the appropriate into	•	0
	ii.		tesses occurring when a light wave the relationship between Einstein's	8
			is difficult to prepare laser in X-ray	
		region?	is difficult to propule faser in 21 fay	
OR	iii.	Explain the propagation of l	e expression of numerical aperture	8
		giving its physical significant	ce. what is v-parameter?	
Q.3	i.	What is Brewster's Law?		2
	ii.	• •	nt the diameter of 10 th ring changes nen a liquid is introduced between the	3
		lens and the plate. Calculate	the refractive index of the liquid.	
	iii.	to a single slit and show the	ensity for the diffraction pattern due hat the intensity of first secondary	5
0.5		maxima is about 4.5 % of tha		_
OR	iv.	produce observable interfe	es of light of same wavelength cannot erence pattern? Describe with full thod for determination of wavelength n.	5

Q.4	1.	Give the importance of Miller indices and symmetry of elements in crystal structure.	3
	ii.	What is a wave packet? Define phase, particle and group velocity. Explain the concept of Heisenberg uncertainty principle.	7
OR	iii.	Obtain the energy Eigen values and the normalized Eigen functions of a particle in an infinite square well. Draw the graph of Eigen functions and their absolute squares for the lowest four states.	7
Q.5	i.	What is damped simple harmonic oscillations? Draw the graph of damped oscillation (displacement vs time). Write the examples of damped oscillations.	4
	ii.	Define reverberation time and absorption coefficient. What is Sabine's formula for reverberation time? Write applications for acoustics for designing of hall.	6
OR	iii.	What is the physical significance of Maxwell's equations? Given the concept of Displacement current.	6
Q.6	i.	Heavier bodies need greater initial effort to put them in motion. Why?	2
	ii.	What is meant by a collision? Discuss two types of collision with their essential characteristics.	3
	iii.	Derive the expression for the gravitational potential due to a solid sphere at a point outside the sphere.	5
OR	iv.	Write short note on: (a) Coriolis Force (b) Conservation of linear momentum	5

EN3BS05 Engineering Physics

Marking Scheme

Q.1	i.	(c) Cr ^y	1
	ii.	(b) total internal reflection	1
	iii.	(b) sodium lamp	1
	iv.	(b) plane	1
	v.	(b) particle nature of radiation	1
	vi.	(d) charge	1
	vii.	(b) gravity	1
	viii.	(b) scalar field	1
	ix.	(a) Yes	1
	х.	(b) centrifugal force	1
Q.2	i.	$P=3 \text{ mW}$, $\lambda_{0} = 6328 \text{ r} = 20 \mu\text{m}$.	
		Area of focussed spot $A = \pi r^2 = 1.3 \text{ x} 10^{-9} \text{ m}^2$	1
		Intensity on the ratina $I = \frac{P}{A} = 2.36 \text{ x} \cdot 10^6 \text{ W/m}^2$	1
	ii.	Three quantum processes and its explanation with diagram	3
		Relationship between Einstein's A and B coefficient.	4
		Why it is difficult to prepare laser in X-ray region?	1
OR	iii.	Propagation of light through an optical fibre, Diagram	2
		Derivation of expression of numerical aperture.	3
		Physical Significance of numerical aperture	1
		What is V-parameter -	2
Q.3	i.	Brewster's Law: Statement and formula	1+1
	ii.	(D_n^2) liquid = $\frac{4 n \lambda R}{\mu}$ = 4 * 10 * λ * R/ 1.40	1
		$(D_n^2) \ air = \frac{4 n \lambda R}{1.00} = 4 * 10 * \lambda * R / 1.00$	1
		$\mu = \frac{(D_n^2) air}{(D_n^2) liquid} = \frac{(1.40)^2}{(1.27)^2} = 1.215$	1
	iii.	Intensity Expression due to a single slit	4
		The intensity of first secondary maxima 4.5% of I_0	1
OR	iv.	Two independent sources of light cannot product sustained interference because they are not coherent. The atoms emitting light in the two sources are independent of each other.	1

Q.4	i.	Importance of Miller indices and Symmetry of elements in	1.5 each
	ii.	crystal Wave Packet	2
	11.	Phase, particle and Group Velocity	1+1+1
		Heisenberg's Uncertainty Principle	2
OR	iii.	Energy Eigen values and the normalized Eigen functions	5
OK	111.		2
		Draw the graph of Eigen functions and their absolute squares for the lowest four states.	2
Q.5	i.	Damped simple harmonic oscillations	1
Q.C		Draw the graph of damped oscillation (displacement vs time).	1
		The examples of damped oscillations.	2
	ii.	Definition of reverberation time and absorption coefficient.	2
	11.	Sabine's formula for reverberation time?	2
		Applications for acoustics for designing of hall.	2
OR	iii.	Physical significance of Maxwell's equations	4
OK	111.	Displacement current.	2
Q.6	i.	According to Newton's second law of motion, $F = ma$ i.e.	2
		For Heavier bodies (of large mass), initial effort (Force F) required is large.	
	ii.	Meaning of collision	1
	11.	Types of collision: Elastic and Inelastic collision	1
		essential characteristics	1
	ii.	Expression for Gravitational Potential	5
OR	iv.	(a) Coriolis force	2.5
JK	1 7 .	(b) Conservation of linear momentum	2.5
		(c) conservation of information	

Experimental details for Fresnel's Bi Prism